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ABSTRACT

The design of supermaneuverable aircraft, high-precision space-born optical tracking

systems and other aerospace systems poses serious challenges to modern control system design

theory. The theme of the proposed research is "making modern control theory work." The

product of the research has been theory and algorithms that can be applied to practical feedback

design problems in which there are specifications requiring robust performance, insensitivity

and stability in the face of both structured and unstructured uncertainty. New theory and

methods have been developed to enable one to deal effectively and systematically with more

realistic performance specifications than was previously possible. Included among these

advances have been improved algorithms for computing reduced-order models for use in control

system design, methods for exactly determining the robustness of stability in the face of several

uncertain real parameters, a less conservative method for testing the stability of systems with a

single sloped-bounded nonlinearity, and several key theoretical and algorithmic advances

relating to robust H" optimal control system design. Current research (being supported under

AFOSR Grant 89-0398) Is continuing in this vein, focusing on numerical robustness and

algorithmic efficiency issues In HO robust control synthesis and relative-error model (REM)

reduction, developing practical methods for "real km " multivariable stability margin analysis,
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expanding the class of systems which the H robust control theory can handle, and developing

singular-value oriented system identification algorithms suitable for use in robust control

system design.
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INTRODUCTION: THE PROBLEM

The underlying problem in robust feedback control system synthesis is to find a feedback

controller C(s) such that a given vector, say col (e,u,y), whose components comprise the

control system's error, control and plant output signals, respectively, remains in a specified set

despite uncertain disturbances, parameters, gains, phases and nonlinearities within a given set,

say D. The performance specifications on the signals e, u, and y may be expressed in terms of

frequency response inequalities (for broadband r.m.s. disturbance rejection), closed-loop pole

locations (for acceptable transient response to impulsive and step disturbances), closed-loop

zero locations (for asymptotic tracking and asymptotic rejection of disturbances with known

poles).

It turns out that this general problem can be reformulated as a consequence a certain

lemma of Youla as the problem of finding the set, say X. of all transfer function matrices X(s)

having "stable" poles (i.e., poles in a stipulated region) for which the excess stability margin

km satisfies

km(A + BXC;)>1 (1)

(see [22,231 and the references therein). Here the A(s), B(s), and C(s) are transfer function

matrices which depend on the specific plant and on where the uncertain noises, parameters, etc.,

enter. The multivariabla stability marain function km(T;.) is defined for any transfer function

matrix T(s) and any set D of uncertain operators as [401

km(T;WQ) - inf (k: k real, (I + kDT) "1 is "unstable" for some D in the set .} ; (2)

the quantity 1/km has been called the structured sinaular value 1 (T) by Doyle [26]. Thus,

km(T;J2) is the gain margin (for the worst-case D In the set J.) of a hypothetical feedback



system having loop transfer function T. The quantity km(T,.) is defined to be zero when T is

open loop unstable. The notion of "unstable" is left intentionally vague here, since the

appropriate definition of stability may vary depending on the application. For example, it may

refer to stability with a specified degree, e.g., with all poles in some specified set [581. A

"stable" function X(s) (that is, a stabilizing compensator C(s)) verifying (1) achieves the

ultimate design objective, but one may also look at optimizing the performance as

kmOpt = max km(A + BXC;J.).
X "stable" (3)

Currently, it is practical to compute the function km(. ;. ) only in special cases such as

when the set D_ is finite or when D is the set of all transfer function matrices whose largest

singular value is bounded for all frequency by a given number, i.e., when ItDII.. is bounded, in

which case the problem (3) reduces to the multivariable LOO optimization problem [22,23]

kmOpt := m 1 1 A + BXC I1..
X "stable" (4)

The problem of developing a useful characterization of the set X of transfer function matrices

X(s) satisfying (1) likewise can only be solved in special cases, e.g., D2 singular-value bounded

or 12 real, scalar gains. Also unsolved, and not less difficult, is the problem of optimizing the

km-performance as described by (3). Our research over the past few years has addressed these

unsolved problems, building upon and extending the theoretical base of HOO optimal control

theory. We have made significant strides toward our goal of creating a cohesive body of theory

that may be used by engineers to solve the broadest possible class of practical robust

multivariable feedback control design problems.
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SUMMARY OF PROGRESS PREVIOUSLY REPORTED

Since our AFOSR-supported research under Grants 85-0256 and 88-0282 began in July

1985, progress has been made on several aspects of this problem, leading to a substantial

number of AFOSR-supported reports and publications [1-20, 24, 28-31, 34, 56-611. Among

the new results is a vastly improved "Toeplitz + Hankel" algorithm for computing the minimal

cost for L- optimal control problems [3,5,14,16,171; the results promise to reduce

computer-time for Lm control calculatios by a factor of 10. Another result [18] involves a

vector-valued alternative to the standard L=" control problem which has been bound to enable a

more precise trade-off between sensitivity S(s) and complementary sensitivity I-S(s). In

[4,5] we describe how the frequency-weighted LOG (Linear Quadratic Gaussian) synthesis

theory (Safonov et al. [251) was used to design a robust multivariable controller for a 40-state

model of a flexible mechanical truss structure; the control design worked well when digitally

implemented and connected to the infinite-order real system. In [21 a homotopy method for

eliminating conservativeness in pI(T;D) stability margin calculation was developed and

evaluated, but found to be too computationally demanding to be practical. Further study resulted

in a significant breakthrough in nonconservative g(T;D) calculation techniques in [1,7,19];

these new results make computation of g(T;D) practical for the first time for the important case

when the set D2 Is a cube in IRn (i.e., the case of several uncorrelated unknown-but-bounded

uncertain real parameters); this problem has become popularly known as the "real km " or "real

p" problem. A major practical advance in 1986 was the development at USC of a software

package [8] within the CTRLCTM/PC-MATLABTM framework for solving a broad class of Lm

optimal control problems. Over the past year, In further work not supported by AFOSR, we have

collaborated with the publishers of PC-MATLAB to create a new PC-MATLAB Robust-Control
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Toolbox software package and user's guide [651. Our toolbox makes the LO optimal control

theory and associated Hankel and balanced model reduction theory widely accessible to practicing

engineers.

The process of developing and testing this software enabled us to identify and resolve a

number of minor, but critical, shortcomings of the existent L* conceptual algorithms; the

initial versions of the refined L- theory and algorithms were summarized in [15]. An early

version of our Robust-Control Toolbox called LINF was used for a "benchmark* multivariable

aircraft controller design problem in [9] and for a flexible space structure controller design in

[65]. In a separate development, we developed a significantly improved computer-oriented

criterion for nonlinear stability which may render the celebrated Popov criterion obsolete; our

new nonlinear stability criterion is superior (i.e., less conservative than) the standard

graphical criteria including the circle criterion, the off-axis circle criterion, and the Popov

criterion. Another major breakthrough has been the solution of the diagonally-scaled HOO

optimal control problem for a limited but nontrivial class of problems [10,12,30]; this new

theory enables achievement of our ultimate design objective, namely the solution of (3) for a

limited class of problems involving complex structured uncertainty.

PROGRESS THIS YEAR

In the past year, we have made several major advances in the area of H- optimal control

theory, in algorithms for model order reduction and in the mathematical system theory. We

regard the first two of the following to be major practical advances, and the third has been a

major theoretical advance; the latter three are important contributions to the theoretical

infrastructure but they are still too new to accurately gauge their practical impact:
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1. T-RTccatL H * Formulae [36, 56, 601

2. Basis-Free Model-Reduction Formulae [24, 28, 57]

3. Spectral Theory of LO and H Problems [59-611

4. Phase Margin for Multivariable Systems

5. H0l Control Over Arbitrary Regions of the Complex Plane [58J

6. State space formula for matrix GCD's.

Two-Riccati HOO controller formula, developed in a series of papers by Doyle, Glover,

Limebeer, Kasenally and Safonov [56,62,38,39,63,64] and closely related to the formula of

Juang and Jonckheere [35, 361, constitute what may be the single greatest breakthrough in

control theory in the past decade. These formula enable one to completely bypass the Youla

parameterization A + BXC and solve the multivariable HO optimization problem (4) by solving

two Riccati equations of the state-space (A, B, C, D) matrices of the plant. The result is the

two-Riccati formula for "order n" HOO controllers which are no more complicated to compute or

implement than H2 controllers (i.e., LOG controllers). We have coded these formula using

PC-MATLAB and CTRL-C and found them to be superior for computer implementation of Hi

optimal control theory, producing HI controller solutions reliably for plants with dozens of

states in only a few minutes of computer time on a VAX 11/780 and on a SUN 3/50 workstation.

We have pursued the "two-Riccati" breakthrough in the H00 theory further in [60,61].

In [601, we develop an embedding technique involving "loop shifting" variable changes which

enable the general HOO optimal control problem to be reduced to the much simpler special case

intially treated by Doyle et al. [38, 39, 63). The simplications made possible by our loop

shifting techniques made it practical, for the first time, to present complete derivations of the

H- theory for the general case. In computer studies we have also observed that the

5



loop-shifting formula are easier to code and slightly faster to compute with than the equivalent

two-Riccati general formulae of Glover et al. [641 and Limebeer et al. [561.

The second major advance, our basis free model reduction formulae [24, 28, 571, has

made model order reduction with an infinity-norm error-criterion practical for those systems

which stand to benefit the most from model reduction, viz., systems with some modes which are

nearly uncontrollable or nearly unobservable. Though perhaps not particularly exciting from a

purely theoretical point of view, they are a major advance because they make Hankel Optimal

(HO) model reduction, Balanced Truncation (BT) model reduction and Balanced Stochastic

Truncation (BST) model reduction practical. A critical shortcoming of these three methods that

had gone unnoticed by theoreticians heretofore precluded their use on systems with

uncontrollable or unobservable modes. A previously required "first step" in these

infinity-norm criterion model reduction methods involved finding a "balancing transformation,*

a transformation which generically fails to exist for non-minimal realizations. Theoreticians

failed to recognize the problem since, On theory, one can always eliminate non-minimal modes.

In practice, however, systems are generically observable and controllable, even if only barely

so, and, in practice, one of the primary uses of model reduction is to identify and discard the

barely observable/controllable modes. Moreover, a computer with finite numerical precision

cannot distinguish a barely observable mode from an unobservable one and, in any case, some

"barely observable" modes can turn out to have a very significant impact on the

frequency-response of a system. Thus, it is folly to suppose, as the previous literature had, that

one can usefully begin a model reduction procedure by discarding the unobservable and

uncontrollable modes. Our basis-free methods for model reduction bypass the inherently

ill-conditioned initial balancing step. The resulting model reduction formula are simpler, faster

6



to compute, and most importantly they work. They work even for nonminimal and nearly

nonminimal systems, reliably eliminating the unobservable and uncontrollable modes while

ensuring that the important infinity-norm error bounds associated with Hankel, balanced

truncation and balanced stochastic truncation model reduction methods are satisfied.

The relative-error infinity-norm error bounds of BST makes our basis free BST

algorithm in [571 especially attractive for robust control system design. A "robustness

theorem" [571 establishes that a model is useful for designing feedback control systems only if

its relative error is less than one thoughout the control loop bandwidth as determined from

singular-value Bode plots of the loop transfer function matrix. This robustness theorem proved

vital in our TRW-supported large space-structure design study [651 in which a 4-state plant

model surprisingly was proved to be adequate for a structure having 116 modes within the

control loop bandwidth. This work is a spinoff of the so-called "phase matching" problem

initiated by Jonckheere; see, e.g., [481, [49] and references therein.

The "Toeplitz + Hankel" operator theoretic interpretation of the H== theory has led to a

number of theoretical insights into the H- optimal control problem which we hope will

eventually lead us to better and faster computational algorithms and, perhaps, to generalization

of the HIO control theory. Moving beyond our early work on fast Toeplitz + Hankel algorithms

[3,14,16,17,34,35], our recent work in [59,611 achieves, we feel, a complete understanding

of the links between the H'" problem and the spectral theory of the linear-quadratic problem.

In a few words, this is the essence of the results in [59,611:

Consider the standard 2-block frequency response inequality

VUWA)

VUCA)A
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verified for some

Q E H00
1

where

H(S + DH +CH sl- -B c H

(S) D Cv

The key idea is to map the frequency response inequality to the time domain using Parseval's like

arguments. This yields

:0 (T uT) < R 2fOuTu dt, V u-Wo \, \ ST  R u -o

where x is generated by the state space equation

S= i x + BU

and

Q = -CTHCH

R = DTvDV

S = YH + YV3BH + CTvDv

where

AT(YH + YV) + (YH + YV) A =-{CTHCH + CTVCv]

The cornerstone of the spectral theory of the linear quadratic problem -- proved ten years ago

by Jonckheere and Silverman -- is that

8



J'o (xT UT) =(u 1, (T + H*IH2 )u]
-S ST R U

where T is Toeplitz and H is Hankel.

Using the LQ-H- mapping, all the results of the spectral theory of the linear quadratic

problem have an Hm interpretation, and vice-versa. Consequently, this symbiotic LQ/H

theory has allowed to provide simple linear-qudratic insight to such problems as (i) degree of

H- compensator; (ii) pole/zero cancellation at H- optimality; (iii) Riccati equation solution to

H° design; (iv) -r-iteration, etc. The challenge before us, now that we understand these

relationships, will be to turn these operator-theoretic insights into practical algorithms. This

is one of the aims of our current work.

The most significant practical impact of this symbiotic LQ/H 0 theory, which we were

first to introduce [3], is a better understanding of the termination condition on the -1-iteration.

Indeed, in the 2-Riccati solution to the 4-block problem, the tolerance level -I is recursively

decreased until "something" breaks down in the Riccati construction of the compensator

achieving the tolerance -i. With the LQ/H= theory at hand, we relate the breakdown of the

2-Riccati equation construction of the compensator to the spectral structure of several "Toeplitz

+ Hankel" operators. Depending on whether -i hits the continuous or discrete spectrum, the

Riccati solution either has closed loop poles on the jco-axis or has the wrong sign. Finally, if

optimality is achieved at the discrete spectrum, an easy procedure for reducing the size of the

HOO compensator emerges.

The fourth area in which we have made progress in the past year is in the development of a

more appropriate concept of multivariable phase margin (901. The notion of phase margin is of

9
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paramount importance since it measures the amount of phase lag a loop can tolerate before going

unstable. The notion of phase margin is well understood and universally accepted for

Single-Input-Single-Output systems. However, despite many efforts, there has not until now

been a completely satisfactory definition of phase margin for multivariable systems.

In the course of this research, we have developed a new notion of phase margin for

multivariable systems. The driving motivation is spacecraft attitude control. Typically, if the

sensor axes are not properly aligned with either the body axes or the inertial axes, this will

introduce an uncertain (unitary) rotation transformation in the feedback channel. This is in

most cases also combined with delays in the sensors. The combination of sensor delay and axis

misalignment results in a unitary uncertainty in the feedback channel.

It is therefore necessary to define a measure of robustness against unitary perturbation in

the feedback channel. This measure of robustness is precisely our notion of multivariable phase

margin. Roughtly, the multivariable phase margin is the maximum allowable phase of a unitary

perturbation L that remains stabilizing.

More precisely, by definition, the phase of the unitary perturbation ' is the largest

absolute value of the arguments of its eigenvalues, the arguments being resolved within (-n, 7r].

The phase margin of the loop matrix L, D(L), has the remarkable property that

V unitary A

such that

phase (A) < D(L)

the loop LA is stable.

Furthermore, there is a weak converse to It. Namely, for any phase angle 4 greater than

10



D(L), there exists a destabilizing unitary perturbation A with phase equal to 4.

An algorithm to compute D(L) has been developed and implemented on a PC. Interestingly,

there are several ways to look at the computational implementation of the phase margin problem.

One way is to look at it as a programming problem (a quadratic optimization with quadratic

constraints). Another way is to look at it as a two variable spectral problem, from which it

follows that (D(L) is equivalent to an algebraic curve problem.

In the course of computer simulation it became evident that the multivariable phase

margin problem has a rich topology--namely, the issue appears to be the topology of the set of

stabilizing A's in the manifold of all unitary perturbations, and whether these "stability

islands" can be characterized by some metric.

In the case of two channels in the feedback path, and a special unitary perturbation, i.e.,

A e SU(2), the phase margin takes the geometric interpretation of a Riemann metric on a

manifold. The group SU(2) of special unitary matrices is isomorphic to the (multiplicative)

group H of unit quaternions. The group of quaternions can be endowed with the so-called

left-invariant metric that makes it a topological group. It turns out that the phase of the

perturbation A is the left-invariant metric between the identity (under multiplication)

quaternion q = (1,0,0,0) and the quaternion representing A. Furthermore, the group of unit

quaternions is itself isomorphic to the 3-sphere S3 imbedded in the Euclidean space R4 . The left

invariant metric between two quaternions represented as points on S3 is nothing other than the

arc of great circle (or geodesic line) joining the two points on the sphere.

Therefore, the relevant manifold of uncertainties in the case A E SU(2) is the sphere S 3 .

The identity perturbation in the feedback channel corresponds to the "North Pole" of the sphere.

11



The set of stabilizing perturbations is a "polar cap" on S3 . Finally, the phase margin is the

lowest "latitute" above which any perturbation is guaranteed to be stabilizing.

We feel this notion of the phase margin as a metric on a manifold of uncertainties could be

extended to other robustness problems, i.e., the Doyle jp function.

Finally, we briefly discuss the fifth area in which we have made significant progress this

past year: Model reduction and HO control over a planar domain [58]. This work, which builds

upon our earlier work in [21,67] provides sate-space formula for solving "one-block" H°O

optimization problems over a subset 0 of the complex plane specifiable in the form
(Z ez C 1 ", - o:;,,
fl=(zl4 Z 0)zJ .

In the solution to the H*(Q) problem, we have followed the conventional line of arguments. The

first step is the rational coprime factorization, which is a purely algebraic object and carries

over to any analyticity domain 0. Then via some 0 inner-outer and' 0 spectral factorizations,

the problem is reduced to the so-called HOO( ) distance problem,

min II H-X IIH.(0)

X( H'(0 )

(H(s) - C(sl - A)'IB)

The above problem is solved via the so-called Mazko Lyapunov equations for the domain 0, i.e.,

.,, "ijp PRJT = Q

I J

It is easily seen on a little thought that the Bartels-Stewart algorithm can be carried over to this

generalized Lyapunov equation.

Finally, the compensator is obtained via classical back substitution.

12
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It is important to observe that our approach does not rely on the Riemann mapping of Q to

the Left-Half-Plane (or the unit disk). This indeed would result in an inflation of

dimensionality. Observe in the above that we have managed to keep the dimension down. Although

O might be a complicated domain requiring a transcendental Riemann mapping function, the size

of A appearing in the Mazko Lyapunov equation is simply the same as the degree of X in the

HOO(Q) distance problem.

The sixth and last area in which we have made significant progress is in the computation of

matrix GCD's (greatest common divisors) [82,87]. It turns out that GCD computation is

equivalent to the design of "squaring-down" compensators for multiloop feedback control. A

squaring-down compensator is a non-square compensator transfer function matrix inserted in

series with a non-square plant transfer function matrix so that their product is square. The key

property that a good squaring-down compensator must possess is that it must not introduce any

non-minimum-phase zeros. In [82] and [87] establish the equivalence between squaring down

and GCD computation and develop state-space algorithms for performing GCD computations. We

also show that squaring-down compensators facilitate the solution of certain "singular" H-

control problems.
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